Mots-clés
![]() dystrophie myotonique de type 2
Commentaire :
ORPHA 606
MIM 602668 Transmission autosomique dominante. Due à l'amplification de répétitions d'un quadruplet CCTG situé dans l'intron 1 du gène ZFN9, localisé sur le chromosome 3 (région 3q21) codant la protéine en doigt de zinc 9, impliquée dans la piégage intranucléaire d'ARN messagers. Sources : ORPHANET, OMIM Principales maladies neuromusculaires, Fiche Technique Savoir et Comprendre, AFM , septembre 2012, 6ème édition Avancées médico-scientifiques neuromusculaires, Fiche Technique Savoir et Comprendre, AFM, octobre 2012, 5ème édition Synonyme(s)DM2 ;DYSTROPHIA MYOTONICA 2 (OMIM) ;dystrophie myotonique (type II) ;myopathie myotonique proximale ;myopathie proximale myotonique ;Myotonic dystrophy type 2 ;myotonique, dystrophie de type 2 ;OMIM : 602668 ;PROMM ;RICKER SYNDROME ;proximal myotonic myopathy ;proximal myotonic dystrophy ORPHA 606Voir aussi |
Documents disponibles dans cette catégorie (362)



Etendre la recherche sur niveau(x) vers le bas
![]()
Avancées dans la dystrophie myotonique de type 2
Myoinfo (AFM-Téléthon), Furling D, Gourdon G, et al.
Avancées de la recherche, Savoir & Comprendre, 2020, 16 p
Revue : Avancées de la recherche Titre : Avancées dans la dystrophie myotonique de type 2 Type de document : Publication AFM Auteurs : Myoinfo (AFM-Téléthon), Auteur ; Furling D, Validateur ; Gourdon G, Validateur ; Loux N, Validateur Editeur : AFM-TELETHON Année de publication : 06/2020 Collection : Savoir & Comprendre Pages : 16 p Langues : Français (fre) Mots-clés : avancée de la recherche ; base de données ; description de la maladie ; dystrophie myotonique ; dystrophie myotonique de type 2 ; essai clinique ; étude observationnelle ; histoire naturelle de la maladie ; maladie neuromusculaire ; prise en charge thérapeutique ; recherche thérapeutique ; recommandation ; registre de malades Résumé : La dystrophie myotonique de type 2 ou PROMM (pour proximal myotonic myopathy) est une maladie rare, d’origine génétique. Elle affecte les muscles, qui s'affaiblissent (dystrophie) et ont du mal à se relâcher après contraction (myotonie). Elle peut toucher aussi d'autres organes (coeur, oeil...). Elle se manifeste à l'âge adulte et évolue lentement. Cette maladie a de nombreux points communs avec une autre maladie neuromusculaire beaucoup plus fréquente, la maladie de Steinert (ou dystrophie myotonique de type 1).
Ce document présente les actualités de l’année écoulée dans la recherche sur la dystrophie myotonique de type 2 : colloques internationaux, études ou essais cliniques en cours, publications scientifiques et médicales.
> dystrophie myotonique de type 2, DM2
> myopathie myotonique proximale
> PROMM (proximal myotonic myopathy)Voir aussiDocuments numériques
![]()
aV20_DM2_not70376Adobe Acrobat PDFAvis des lecteurs Aucun avis, ajoutez le vôtre !
(mauvais) 15 (excellent)
![]()
Myotonic Dystrophy Type 2 : Synonym: Proximal Myotonic Myopathy (PROMM)
Schoser B
GeneReviews® [Internet], 2020
Revue : GeneReviews® [Internet] Titre : Myotonic Dystrophy Type 2 : Synonym: Proximal Myotonic Myopathy (PROMM) Type de document : Article Auteurs : Schoser B Année de publication : 19/03/2020 Langues : Anglais (eng) Mots-clés : article de synthèse ; conseil génétique ; description de la maladie ; diagnostic ; diagnostic différentiel ; dystrophie myotonique ; dystrophie myotonique de type 2 ; épidémiologie ; étiologie ; génétique moléculaire ; maladie neuromusculaire ; prévalence ; prise en charge thérapeutique Résumé : Initial Posting: September 21, 2006; Last Update: March 19, 2020.
Clinical characteristics.
Myotonic dystrophy type 2 (DM2) is characterized by myotonia and muscle dysfunction (proximal and axial weakness, myalgia, and stiffness), and less commonly by posterior subcapsular cataracts, cardiac conduction defects, insulin-insensitive type 2 diabetes mellitus, and other endocrine abnormalities. While myotonia (involuntary muscle contraction with delayed relaxation) has been reported during the first decade, onset is typically in the third to fourth decade, most commonly with fluctuating or episodic muscle pain that can be debilitating and proximal and axial weakness of the neck flexors and the hip flexors. Subsequently, weakness occurs in the elbow extensors and finger flexors. Facial weakness and weakness of the ankle dorsiflexors are less common. Myotonia rarely causes severe symptoms. In a subset of individuals, calf hypertrophy in combination with brisk reflexes is notable.
Diagnosis/testing.
The diagnosis of DM2 is established in a proband by identification of a heterozygous pathogenic expansion of a CCTG repeat within a complex repeat motif, (TG)n(TCTG)n(CCTG)n in CNBP. The number of CCTG repeats in a pathogenic expansion ranges from approximately 75 to more than 11,000, with a mean of approximately 5,000 repeats. The detection rate of a CNBP CCTG expansion is more than 99% with the combination of routine PCR, Southern blot analysis, and the PCR repeat-primed assay.
Management.
Treatment of manifestations: Ankle-foot orthoses, wheelchairs, or other assistive devices as needed for weakness; routine physical activity appears to help maintain muscle strength and endurance and to control musculoskeletal pain; medications used with some success in myalgia management include mexilitene, gabapentin, pregabalin, nonsteroidal anti-inflammatory drugs, low-dose thyroid replacement, and tricyclic antidepressants; myotonia rarely requires treatment but mexilitene or lamotrigine may be beneficial in some individuals; removal of cataracts or epiretinal membrane that impair vision; defibrillator placement for those with arrhythmias; hormone substitution therapy for endocrine dysfunction; prokinetic agents may be helpful for gastrointestinal manifestations; cognitive behavioral therapy and modafinil may be helpful for fatigue and daytime sleepiness; vitamin D supplementation for those with deficiency; hearing aids for sensorineural hearing loss.
Prevention of secondary complications: Anesthetic risk may be increased and therefore assessment of cardiac and respiratory function before and after surgery are recommended. Prompt treatment of hypothyroidism and vitamin D deficiency to reduce secondary weakness and myotonia.
Surveillance: Annual evaluation with neurologist, occupational therapist, and physical therapist; annual ophthalmology evaluation for posterior subcapsular cataracts and epiretinal membranes; annual ECG, echocardiogram, and 24-hour Holter monitoring to detect/monitor cardiac conduction defects and cardiomyopathy; cardiac MRI per cardiologist; annual measurement of fasting serum glucose concentration, glycosylated hemoglobin level, thyroid hormone levels, and vitamin D; serum testosterone and FSH per endocrinologist.
Agents/circumstances to avoid: Cholesterol-lowering medications when associated with increased weakness.
Genetic counseling.
DM2 is inherited in an autosomal dominant manner. To date, all individuals whose biological parents have been evaluated with molecular genetic testing have had one parent with a CCTG repeat expansion; de novo pathogenic variants have not been reported. Each child of an individual with a CCTG repeat expansion has a 50% chance of inheriting the expansion. There is no correlation between disease severity and CCTG repeat length. Prenatal testing for pregnancies at increased risk and preimplantation genetic testing are possible once the CCTG repeat expansion has been identified in an affected family member.Lien associé : Texte complet disponible en accès libre sur Bookshelf GeneReviews® [Internet] Pubmed / DOI : Pubmed : 20301639 Avis des lecteurs Aucun avis, ajoutez le vôtre !
(mauvais) 15 (excellent)
![]()
Malignant Hyperthermia Susceptibility : Synonym: Malignant Hyperpyrexia
Rosenberg H, Sambuughin N, Riazi S, et al.
GeneReviews® [Internet], 2020
Revue : GeneReviews® [Internet] Titre : Malignant Hyperthermia Susceptibility : Synonym: Malignant Hyperpyrexia Type de document : Article Auteurs : Rosenberg H ; Sambuughin N ; Riazi S ; Dirksen R Année de publication : 16/01/2020 Langues : Anglais (eng) Mots-clés : article de synthèse ; biopsie musculaire ; conseil génétique ; corrélation génotype-phénotype ; description de la maladie ; diagnostic clinique ; diagnostic différentiel ; diagnostic moléculaire ; dystrophie musculaire de Becker ; dystrophie musculaire de Duchenne ; dystrophie myotonique de type 1 ; dystrophie myotonique de type 2 ; examen clinique ; gène CACNL1A3 ; gène RYR1 ; génétique moléculaire ; grossesse ; hyperthermie maligne ; myopathie à central core ; myopathie à multiminicores ; myotonie congénitale ; paralysie périodique familiale hypokaliémique ; physiopathologie ; prévalence ; prévention des complications ; recommandation ; rhabdomyolyse ; susceptibilité génétique ; syndrome malin des neuroleptiques ; test de contracture ; thyréotoxicose Résumé : Initial Posting: December 19, 2003; Last Update: January 16, 2020.
Clinical characteristics.
Malignant hyperthermia susceptibility (MHS) is a pharmacogenetic disorder of skeletal muscle calcium regulation associated with uncontrolled skeletal muscle hypermetabolism. Manifestations of malignant hyperthermia (MH) are precipitated by certain volatile anesthetics (i.e., halothane, isoflurane, sevoflurane, desflurane, enflurane), either alone or in conjunction with a depolarizing muscle relaxant (specifically, succinylcholine). The triggering substances cause uncontrolled release of calcium from the sarcoplasmic reticulum and may promote entry of extracellular calcium into the myoplasm, causing contracture of skeletal muscles, glycogenolysis, and increased cellular metabolism, resulting in production of heat and excess lactate. Affected individuals experience acidosis, hypercapnia, tachycardia, hyperthermia, muscle rigidity, compartment syndrome, rhabdomyolysis with subsequent increase in serum creatine kinase (CK) concentration, hyperkalemia with a risk for cardiac arrhythmia or even cardiac arrest, and myoglobinuria with a risk for renal failure. In nearly all cases, the first manifestations of MH (tachycardia and tachypnea) occur in the operating room; however, MH may also occur in the early postoperative period. There is mounting evidence that some individuals with MHS will also develop MH with exercise and/or on exposure to hot environments. Without proper and prompt treatment with dantrolene sodium, mortality is extremely high.
Diagnosis/testing.
The diagnosis of MHS is established with in vitro muscle contracture testing by measuring the contracture responses of biopsied muscle samples to halothane and graded concentrations of caffeine. The diagnosis of MHS can also be established by identification of a pathogenic variant in CACNA1S, RYR1, or STAC3 on molecular genetic testing.
Management.
Treatment of manifestations: Early diagnosis of an MH episode is essential. Successful treatment of an acute episode of MH includes: discontinuation of potent inhalation agents and succinylcholine; increase in minute ventilation to lower end-tidal CO2; use of MHAUS helpline; administration of dantrolene sodium intravenously; cooling measures if body temperature is >38.5° C; treatment of cardiac arrhythmias if needed (do not use calcium channel blockers); monitoring blood gases, serum concentrations of electrolytes and CK, blood and urine for myoglobin, and coagulation profile; treatment of metabolic abnormalities.
Prevention of primary manifestations: Individuals with MHS should not be exposed to potent volatile agents and succinylcholine. Individuals undergoing general anesthetics that exceed 30 minutes in duration should have their temperature monitored using an electronic temperature probe. Individuals with MHS should carry proper identification as to their susceptibility.
Agents/circumstances to avoid: Avoid potent inhalation anesthetics and succinylcholine. Calcium channel blockers should not be given together with dantrolene due to a potential cardiac depressant effect. Serotonin antagonist (5HT3-antagonist) antiemetics should be used cautiously. Individuals with MHS should avoid extremes of heat, but not restrict athletic activity unless there is a history of overt rhabdomyolysis and/or heat stroke. Strenuous activities at high ambient temperatures should be avoided or performed with caution. In individuals with MH undergoing cardiac bypass surgery, aggressive rewarming should be avoided, as it may be associated with development of clinical signs of MH.
Evaluation of relatives at risk: If the MHS-causative pathogenic variant in the family is known, molecular genetic testing can be used to established increased risk of MH in a heterozygous individual; molecular genetic testing alone cannot be used to identify family members who are not at increased risk for MH due to other possible genetic risk factors. If the pathogenic variant in the family is not known or if an at-risk relative is found to be negative for a familial pathogenic variant, muscle contracture testing can be used to assess susceptibility to MH.
Pregnancy management: If a pregnant woman with MHS requires a non-emergent surgery, a non-triggering anesthetic (local, nerve block, epidural, spinal anesthesia, or a total intravenous general anesthetic) should be administered. Continuous epidural analgesia is highly recommended for labor and delivery. If a cesarean delivery is indicated in a woman who does not have an epidural catheter in place, neuraxial (spinal, epidural, or combined spinal-epidural) anesthesia is recommended (if not otherwise contraindicated). If a general anesthetic is indicated, a total intravenous anesthetic technique should be administered, with an anesthesia machine that has been prepared for an MH-susceptible individual.
Genetic counseling.
Malignant hyperthermia susceptibility (MHS) is an autosomal dominant disorder. Most individuals diagnosed with MHS have a parent with MHS, although the parent may not have experienced an episode of MH. The proportion of individuals with MHS caused by a de novo pathogenic variant is unknown. Each child of an individual with MHS has a 50% chance of inheriting a causative pathogenic variant. Prenatal teesting for a pregnancy at increased risk is possible if there is a known MH pathogenic variant in the family.Lien associé : Texte complet disponible en accès libre sur Bookshelf GeneReviews® Pubmed / DOI : Pubmed : 20301325 Avis des lecteurs Aucun avis, ajoutez le vôtre !
(mauvais) 15 (excellent)
![]()
Structure-Specific Cleavage of an RNA Repeat Expansion with a Dimeric Small Molecule Is Advantageous over Sequence-Specific Recognition by an Oligonucleotide
Benhamou RI, Angelbello AJ, Andrews RJ, et al.
ACS chemical biology, 2020
Revue : ACS chemical biology Titre : Structure-Specific Cleavage of an RNA Repeat Expansion with a Dimeric Small Molecule Is Advantageous over Sequence-Specific Recognition by an Oligonucleotide Type de document : Article Auteurs : Benhamou RI ; Angelbello AJ ; Andrews RJ ; Wang ET ; Moss WN ; Disney MD Editeur : United States Année de publication : 01/2020 Langues : Anglais (eng) Mots-clés : culture cellulaire ; dystrophie myotonique ; dystrophie myotonique de type 2 ; in vitro ; maladie neuromusculaire ; oligonucléotide antisens ; recherche thérapeutique Pubmed / DOI : Pubmed : 31927948 / DOI : 10.1021/acschembio.9b00958
N° Profil MNM : 2020012 En ligne : http://www.ncbi.nlm.nih.gov/pubmed/31927948 Avis des lecteurs Aucun avis, ajoutez le vôtre !
(mauvais) 15 (excellent)
![]()
A Toxic RNA Catalyzes the Cellular Synthesis of Its Own Inhibitor, Shunting It to Endogenous Decay Pathways
Benhamou RI, Angelbello AJ, Wang ET, et al.
Cell chemical biology, 2020
Revue : Cell chemical biology Titre : A Toxic RNA Catalyzes the Cellular Synthesis of Its Own Inhibitor, Shunting It to Endogenous Decay Pathways Type de document : Article Auteurs : Benhamou RI ; Angelbello AJ ; Wang ET ; Disney MD Editeur : United States Année de publication : 01/2020 Langues : Anglais (eng) Mots-clés : dystrophie myotonique ; dystrophie myotonique de type 2 ; maladie neuromusculaire ; pharmacologie ; recherche thérapeutique Pubmed / DOI : Pubmed : 31981476 / DOI : 10.1016/j.chembiol.2020.01.003
N° Profil MNM : 2020013 En ligne : http://www.ncbi.nlm.nih.gov/pubmed/31981476 Avis des lecteurs Aucun avis, ajoutez le vôtre !
(mauvais) 15 (excellent)
![]()
Patient Input to Inform the Development of Central Nervous System Outcome Measures in Myotonic Dystrophy
White M
Therapeutic innovation & regulatory science, 2020
PermalinkPermalink![]()
Characterization of Iron Accumulation in Deep Gray Matter in Myotonic Dystrophy Type 1 and 2 Using Quantitative Susceptibility Mapping and R2(*) Relaxometry: A Magnetic Resonance Imaging Study at 3 Tesla
Ates S, Deistung A, Schneider R, et al.
Frontiers in neurology, 2019, 10
Permalink![]()
Fragility fractures and bone mineral density in male patients affected by type 1 and type 2 myotonic dystrophy
Passeri E, Passeri E, Sansone VA, et al.
Neuromuscular disorders : NMD, 2019
Permalink![]()
Consensus-based care recommendations for adults with myotonic dystrophy type 2
Schoser B, Montagnese F, Bassez G, et al.
Neurology. Clinical practice, 2019, 9, 4, p 343
PermalinkPermalink![]()
Essais neuromusculaires en cours et en préparation : Février 2019 - 3ème Edition
Brignol TN, Bichat M, Cukierman L, et al.
Fiche technique, Savoir & Comprendre, 2019, 24p
Permalink![]()
Essais neuromusculaires en cours et en préparation : Octobre 2018 - 2ème Edition
Brignol TN, Bichat M, Cukierman L, et al.
Fiche technique, Savoir & Comprendre, 2018, 24
PermalinkPermalink![]()
What the internist should know about hereditary muscle channelopathies
Bissay V, Van Malderen SCH
Acta clinica Belgica, 2018, 73, 1
Permalink![]()
Author response: High frequency of gastrointestinal manifestations in myotonic dystrophy type 1 and type 2
Hilbert JE, Thornton CA, Moxley RT
Neurology, 2018, 90, 17, p 814
Permalink![]()
Editors' note: High frequency of gastrointestinal manifestations in myotonic dystrophy type 1 and type 2
Karam C, Galetta S
Neurology, 2018, 90, 17, p 813
Permalink![]()
Reader response: High frequency of gastrointestinal manifestations in myotonic dystrophy type 1 and type 2
Silvestri G, Maccora D, Perna A, et al.
Neurology, 2018, 90, 17, p 814
Permalink![]()
Hearing impairment in patients with myotonic dystrophy type 2
van Vliet J, Tieleman AA, van Engelen BGM, et al.
Neurology, 2018, 90, 7, p 615
Permalink![]()
Qualitative and Quantitative Aspects of Pain in Patients with Myotonic Dystrophy Type 2
van Vliet J, Tieleman AA, Verrips A, et al.
The journal of pain : official journal of the American Pain Society, 2018, 19, 8, p 920
Permalink![]()
Early onset posterior subscapular cataract in a series of myotonic dystrophy type 2 patients
Papadopoulos C, Kekou K, Xirou S, et al.
Eye (London, England), 2017
Permalink![]()
Principales maladies neuromusculaires
Brignol TN, Urtizberea JA
Fiche technique, Fiche Technique Savoir & Comprendre "médico-scientifiques", 2017, 60 p.
PermalinkPermalink![]()
Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects
Meola G, Cardani R
Neurological sciences, 2017, 38, 4, p 535
Permalink![]()
Vie de l'association : Des groupes d'intérêt à votre écoute
VLM. Vaincre les myopathies, 2017, 180, p. 05
Permalink